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easier than that of the fully occupied Ti layer. It is 
probable that the stacking faults which occur at a low 
temperature such as 683 K are due only to the slide 
between the sandwiches, and the experimental data 
shown in Fig. 1 should be interpreted appropriately on 
the basis of the extended model. 

Experimental patterns which suggest the occurrence 
of stacking faults are often observed for the various 
temperatures and compositions in the Ti-S system. The 
method of analysis of the structure with stacking faults 
described above may be effectively used for considering 
the phase-relation problem in this system. 
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Abstract 

Calculations are presented of the Debye-Waller factors 
for silicon, diamond and germanium in the tempera- 
ture range 1 to 1000 K and for grey tin in the range 1 
to 280 K. Values were obtained from the shell model, 
the adiabatic bond-charge model and the valence force 
potential model for all four materials. Further values 
are listed from the fitted Born-von K~rman model for 
silicon and germanium and from two additional 
parametrizations of the valence force potential model 
for silicon. The effect of dynamic deformation on the 
Debye-Waller factor of silicon and, to a slightly lesser 
extent, the other three elements, is investigated. The 
Debye-Waller factor for the shells only in the the shell 
models is calculated. The effect introduced by dynamic 
deformation whereby the Debye-Waller B value varies 
with scattering vector K is evaluated. Finally, the 
anisotropic Debye-Waller factor components for the 
bond charges are calculated for all four elements. It is 
found that the bond charges in the bond-charge model 
and the shells in the shell model vibrate substantially 
less than the main atomic cores. It is concluded that if 
the models are at all realistic then the effects of 
dynamic deformation on the Debye-Waller factors of 
these elements should be seriously considered. 

Introduction 

Interest in the scattering caused by dynamic 
deformation of electron distributions has arisen from 
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essentially two different sources. On the one hand 
detailed investigation into thermal diffuse scattering 
processes has suggested that some contribution to the 
X-ray scattering is made by the deformation of the 
electron distribution during thermal vibration, as, for 
example, has been discussed by Buyers, Pirie & Smith 
(1968). On the other hand, very accurate crystallo- 
graphic structural determinations are reaching the stage 
with favourable materials that different thermal 
motions of different parts of the electron distribution 
associated with one particular atom may be 
experimentally distinguished. An example of these 
possibilities has been discussed by Price, Maslen & 
Mair (1978) in the analysis of data for silicon. 

In succeeding sections the aim is to bring the insight 
generated by thermal diffuse scattering studies to bear 
on the effect which is of most interest to the structural 
crystallographer, namely the Debye-Waller factor. 
Although particular emphasis is placed on providing 
numerical information for silicon, partly for 
comparison and partly for their intrinsic interest, 
additional calculations are presented for diamond, 
germanium and a-tin. 

The dynamical deformation formalism is, essentially, 
a general parametric description of the influence of 
dynamically distorting electron distributions on the 
X-ray scattering. The formalism enables distorting 
atoms to be treated in a similar way to rigid atoms 
provided certain terms in the cross section are redefined 
so that, in effect, additional terms are added to the 
scattering cross sections. As a consequence, any cross 
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section can be developed with a general set of 
parameters (fl parameters, so called after Born, 1942) 
without prejudice to the specific nature of the 
deformation which takes place in a given situation. 
Once a detailed physical model of the deformation is 
proposed then this model will generate a subset of the 
general fl parameters with relationships between the 
members and values determined by the model 
characteristics. 

A preceding paper, Reid (1979) hereinafter referred 
to as (I), showed how the Debye-Waller factors were 
affected in the general formalism and considered the 
particular case of shell-model deformations in the alkali 
halides. Before discussing the extensions of this 
approach to silicon and related elements we begin by 
introducing different dynamical models and calculating 
the Debye-Waller factors given by these various 
models. 

Lattice-dynamical models and their Debye-Waller 
factors 

One of the main purposes of a lattice-dynamical model 
is to provide an interpolative scheme to determine 
anywhere in the Brillouin zone the lattice frequencies 
and polarization vectors from a necessarily small 
number of experimental frequency measurements. Two 
types of model with no atomic deformation have been 
successfully fitted to measured frequency and elastic 
data, namely the valence force potential models and the 
simple Born-von K/lrm/m model. Apart from fitting the 
data well, these models have the additional merit of 

requiring no Coulomb coefficients and hence can 
speedily produce eigendata over a very fine mesh of 
wavevectors covering the entire zone. 

The Debye-Waller B values were calculated for 
silicon for the six-parameter valence force potential 
models of Singh & Dayal (1970), Solbrig (1971) and 
Tubino, Piseri & Zerbi (1972) and the Born-von 
Karm/m model of Zdetsis & Wang (1979) by direct 
evaluation of the expression 

B - - -  ~ (1) 
6m N a" 

A ,  

This simplification of the general expression (see I) can 
be used for silicon-type materials because appropriate 
normal coordinates give eigenvectors 

g(2/2) = g'*(1/2). (2) 

[The 2 and 1 for the k values in the eigenvectors ~" (k/2) 
refer to tlae two different atom sites in the silicon umt 
cell.] One consequence of this relation is that the eigen- 
vector for each atom site has a magnitude of l/V/2 
regardless o| wavevector. 

The summation (1) was taken over 3072000 
frequencies in the Brillouin zone to reduce sampling 
errors to negligible proportions. The zero-phonon 
contribution was evaluated analytically, though for this 
sampling density it typically comes to about 0.5% at 
room temperature and less at lower temperatures. No 
estimates for quasiharmonic frequency shifts were 
included with the variation in temperature. 

The B values given by these models are included in 
Table 1. Since all the valence force potential models 

Table 1. Debye-Waller B values (A 2) for  silicon calculated from the lattice-dynamical models referred to in the 
text 

All the models are good ones with their parameters determined to some extent from lattice frequencies measured by slow-neutron 
scattering at room temperature. The fourth decimal place is not really significant and is included to assist interpolation. 

Temperature Shell Bond VFP VFP VFP 
(K) model charge Solbrig Singh Tubino BVK 

1.0 0.1937 0.1881 0.1825 0.1849 0.1857 0.1863 
5.0 0.1937 0.1882 0.1826 0.1850 0.1858 0.1864 

10.0 0.1939 0.1883 0.1828 0.1852 0.1860 0.1866 
20.0 0.1947 0.1891 0. 1835 0.1861 0.1868 0.1874 
40.0 0.1999 0.1934 0.1875 0.1907 0.1914 0.1918 
60.0 0.2116 0.2030 0.1963 0.2004 0.2012 0.2014 
80.0 0.2286 0.2172 0.2093 0.2146 0.2154 0.2157 

100.0 0.2491 0.2349 0.2256 0.2321 0.2330 0.2333 
150.0 0.3100 0.2882 0.2751 0.2848 0.2860 0.2865 
200.0 0.3786 0.3493 0.3321 0.3450 0.3465 0.3472 
250.0 0.4514 0.4147 0.3934 0.4095 0.4113 0.4122 
295-0 0.5192 0.4758 0.4507 0.4697 0.4718 0-4729 
350.0 0.6038 0.5522 0.5225 0.5451 0.5476 0.5489 
400.0 0.6819 0.6230 0.5890 0.6148 0.6177 0.6192 
500.0 0.8402 0.7665 0.7240 0.7562 0.7599 0.7617 
600.0 1.0001 0.9117 0.8608 0.8994 0.9038 0.9060 
700.0 I. 1610 1.0579 0.9985 1.0436 1.0486 1.0513 
800.0 1.3226 1.2047 I. 1368 1.1884 I. 1942 1.1972 
900.0 1.4847 1.3520 I. 2756 1.3336 1.3401 1.3435 

1000.0 1.6470 1.4996 1.4147 1.4791 1.4864 1.4902 
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were fitted to similar, though not identical, data sets it is 
surprising that Solbrig's model should produce 
significantly different values. In fairness to Solbrig it 
must be added that he considered his own nine- 
parameter model to be an improvement over his 
six-parameter model but we have not investigated this 
refinement. 

A comparison between the models is presented more 
suitably on a diagram as a plot of the Debye 
temperature O M. Most of the temperature dependence 
of B which is common to all the models is taken up by 
the relation between B and OM, namely 

6 h  2 T k O"/T ~ I__~] 
B - - -  o J + - ( 3 )  m k  n 0 2 - 1) 4 ' 

in a standard notation ( e .g .  Willis & Pryor, 1975). Fig. 
1 shows the resulting OM deduced from (3). A 
comparison with the Debye temperature 0 c derived 
from specific-heat data (as shown, for example, by 
Zdetsis & Wang, 1979) emphasizes that O M is different 
from 0 c in both magnitude and temperature 
dependence and provides a good warning against a 
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Fig. 1. The calculated Debye temperatures OM for silicon given by 
the different lattice-dynamical models referenced in the text. The 
curve labelled 'thermodynamic' was derived by Salter (1965). 
The direct experimental results shown as bars come from: (a) 
Aldred & Hart (1973); (b) Batterman & Chipman (1962); (p) 
Price, Maslen & Mair (1978); and (v) Voland et al. (1976). 

confusion of these two quantities. It is possible, 
nevertheless, to deduce O~t from purely thermo- 
dynamic data and Fig. 1 includes the result of a Pade 
approximant analysis of thermodynamic results for 
silicon by Salter (1965). The agreement in both 
magnitude and general shape is encouraging. 

Also included for comparison in Fig. 1 are some 
experimental O M deduced from X-ray analyses. The 
interpretation of these results is not completely clear. 
Early results, not shown on the figure, have tended to 
be too high, perhaps due to inadequate corrections for 
systematic effects such as TDS. Voland, Deus & 
Schneider (1976) give nine references to earlier work 
and their own value of 527.5 + 2 calculated from their 
B value at 300 K agrees well with that of 528.2 + 1 
given at 293.2 K by Price, Maslen & Mair (1978). This 
latter value arises out of a most detailed scattering- 
factor analysis of the accurate data of Aldred & Hart 
(1973) measured both at room temperature and at 92.2 
K but it cannot be assumed to be the best figure 
available. Aldred & Hart in their original analysis took 
care to deduce their values only from high-index 
reflections to ensure they referred only to motion of the 
core. Their values differ from those of Price and 
co-workers, as Fig. 1 shows, though unfortunately we 
cannot take the difference as giving a measure of the 
effect of the bonding electrons because this effect is 
likely to be masked by systematic differences 
introduced by the different charge-density model 
treatment of Price and co-workers. 

The additional B values quoted in Table 1 and Fig. 1 
are given by two models that do include dynamic 
deformation and which we shall be considering in the 
subsequent sections. The shell model is well known and 
for all the calculations in this paper we have used the 
program of Kunc & Nielsen ( 1 9 7 9 ) f o r  the 14- 
parameter model, with input data obtained from 
references listed with the tables. Dolling's (1963) shell 
model IIC for silicon has in the past been extensively 
quoted and a calculation of its Debye-Waller B values 
reported in an earlier paper by Robertson & Reid 
(1979). The more recent bond-charge model of Weber 
(1977) appears to have much to recommend it and 
although it has only four disposable parameters its B 
values are not far from recent experimental values. 
There may even be scope for improvement if the model 
parameters are least-squares-fitted to all the experi- 
mental frequency data available. 

A detailed analysis as to which model best represents 
the lattice frequencies of silicon (or the other three 
materials to be presented) is beyond the scope of this 
paper. However, the physical basis and suitability of 
the various models are discussed in all the source 
references containing the model parameters. It must 
also be mentioned that we have not covered a l l  the 
good lattice-dynamical models suitable for silicon. 

Finally, Table 2 shows Debye-Waller B values 
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Table 2. Debye-Waller B values (A 2) for diamond, germanium and a-tin 

The various models were generally fitted at room temperature for diamond, 100 K for germanium and 90 K for tvtin. The sampling of the 
Briilouin zone for the summations was usually the same as for the corresponding models for silicon. For the deformable atom models the 
sum of (l)  was taken over 48 000 frequencies which can produce values up to about 0-2% too small at the higher temperatures, due in part 
to approximations in the treatment of the zero-phonon region. 

Diamond Germanium tt-Tin 

Temperature Valence Shell Bond Valence Born-von Shell Bond Valence Shell Bond 
(K) force (a) model (b) charge (a~ force (a) Kfirmfin (e) model (b) charge (d) force ~a) model (c) charge ~a) 

1.0 0.1283 0.1282 0.1277 0.1244 0.1262 0.1323 0.1282 0.1240 0.1374 0.1283 
5.0 0.1283 0.1282 0.1277 0.1245 0.1263 0.1324 0.1282 0.1243 0-1377 0-1285 

10.0 0.1283 0.1282 0.1277 0.1249 0.1269 0.1328 0.1286 0.1257 0.1394 0.1297 
20.0 0.1284 0.1282 0.1278 0.1269 0-1295 0.1352 0.1307 0.1340 0.1523 0.1383 
40.0 0.1286 0.1284 0.1279 0.1384 0-1434 0.1505 0.1434 0-1690 0.2022 0.1752 
60.0 0.1289 0.1286 0.1282 0.1579 0.1658 0.1753 0.1648 0.2149 0.2644 0.2238 
80.0 0.1293 0.1290 0.1286 0.1819 0.1928 0.2051 0.1910 0.2657 0.3315 0.2773 

100.0 0.1299 0.1296 0.1291 0.2087 0.2224 0.2377 0.2200 0.3192 0.4013 0.3336 
150.0 0.1320 0.1316 0.1312 0.2825 0.3032 0.3259 0.2994 0.4583 0.5815 0.4798 
200.0 0.1354 0.1349 0.1344 0-3611 0.3888 0.4191 0.3837 0.6010 0.7653 0.6297 
250-0 0.1400 0.1394 0.1389 0.4420 0.4767 0.5145 0.4703 0.7454 0.9507 0-7812 
295.0* 0.1451 0.1445 0.1439 0.5160 0.5568 0.6015 0.5493 0.8325 1.0624 0.8726 
350.0 0. 1525 0.1519 0.1511 0.6072 0.6557 0.7087 0.6468 
400.0 0.1601 0.1595 0.1586 0.6906 0.7461 0.8067 0.7359 
500-0 0.1776 0.1768 0.1757 0.8584 0.9277 1.0035 0.9150 
600.0 0.1971 0.1962 0.1949 1-0269 1.1101 1.2009 1.0948 
700-0 0-2182 0.2171 0.2155 1.1958 1.2928 1.3989 1.2750 
800.0 0.2403 0.2391 0.2373 1.3650 1.4759 1.5970 1.4555 
900.0 0.2631 0.2618 0.2598 1.5343 1.6590 1.7953 1.6361 

1000.0 0.2866 0.2851 0.2828 1.7038 1-8423 1.9938 1.8168 

Notes: (a) Tubino et al. (1972). All the tables in this reference contain erroneous information though the authors' dispersion relations are 
correct. We are grateful to Dr L. Piseri who guided us to the correct matrix elements for the model. (b) Dolling & Cowley (1966), and 
Warren, Yarneli, Dolling & Cowley (1967). The parameter 6 e had to be taken as one quarter the published value for diamond to reproduce 
the dispersion curves. This may represent a mistake in the quoted units for ~5 R. (c) Price, Rowe & Nicklow (1971). (d) Weber (1977). 
(e) Model (I) of Herman (1959). This model is a reasonable fit and does not use so many neighbours as the model of Zdetsis & Wang 
(1979). 

* The a-tin values near room temperature are evaluated at 280 and not 295 K because of the phase transition at approximately 286 K. 

calculated with some corresponding models for 
diamond, germanium and grey tin. As far as the 
authors are aware, they represent the best theoretical 
values available at present and should provide a good 
comparison for experimental results. It is immediately 
noticeable that the shell model gives larger B values 
than the other models except in the case of diamond. A 
comparison between the experimentally determined 
frequencies and the dispersion curves given in the 
source articles shows regions of significant difference, 
with the shell model tending to produce frequencies that 
are too low. It is likely that this fitting error is the 
major source of the deviation of B values, possibly 
reflecting the fact that the constraints placed on the 
general shell model to reduce the number of para- 
meters to fourteen are not completely satisfactory for 
the Group IV elements. Although there are other 
appreciable and interesting differences shown by 
different models for one material, the range is typically 
much smaller than that displayed by experimental 
determinations. Indeed, there can be few quantities so 
apparently straightforward to determine as the Debye- 
Waller factor but in practice so elusive. Two aspects of 

the problem are well illustrated for diamond by the 
detailed work of Stewart (1973) and Price, Maslen & 
Moore (1978). 

Dynamic deformation and the shell model 

There are two ways of looking at an atom which is 
divided into subunits that can move relative to each 
other. Either the subunits can be treated as separate 
(but linked) quantities and each ascribed a Debye- 
Waller factor of its own, or the atom as a whole can be 
assigned an effective Debye-Waller factor which, 
through the coupling of the rest of the lattice to the 
deformation, will vary as the scattering vector K. After 
an elegant set of experiments measuring the 222 reflec- 
tion of silicon, Fujimoto (1974) followed the first ap- 
proach and tried to explain his results with the help of a 
calculation of the Debye-Waller factor of the shell in 
Dolling's shell model. In the absence of facilities to 
calculate the model eigendata he was unable to obtain a 
reliable result. The B values he was seeking are shown 
in Column 3 of Table 3 which was calculated by 
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evaluating the shell eigenvectors and the model 
frequencies in a sum over 48 000 phonon states in the 
Brillouin zone. 

If these values for silicon are compared with any 
column of Table 1, and if it is remembered that B is 
directly proportional to the mean-square vibrational 
amplitude, it is clear that the shells vibrate substantially 
less than the cores, contrary to the suspicions of 
Fujimoto but in broad agreement with the behaviour of 
all the alkali-halide shells investigated in (I). For 
confirmation of the reasonableness of this result one 
looks to experimental determinations of the B values 
associated with the bonding electrons. However, a 
summary by Price, Maslen & Mair (1978) of fairly 
recent experimental results suggests disagreement 
amongst different investigations. The argument has 
been repeated several times that if the bonding electrons 
remain midway between neighbouring atoms which 
vibrate independently then the B value for the bonds 
would be expected to be 0-5 that of the cores. If one 
identifies the shell with some average property of the 
bonding electrons, then the shell model indicates that 
the bonds vibrate slightly less than this, forming a 
moderately rigid structure within which the cores move. 
In silicon, the core-shell force constant is fairly weak 
and one can imagine that as the cores drive the shells 
through this soft spring against the reaction of 
Coulomb forces and nearest-neighbour forces the shells 
fail to move as much as the cores causing the atom to 
appreciably dynamically deform. Table 3 also shows 
that there is a similar effect in germanium. With 

Table 3. Debye-Waller B values (A 2) for the shells 
only, in the shell models for diamond, silicon, 

germanium and a-tin 

Temperature 
(K) Diamond Silicon Germanium tvTin 

1.0 0.0974 0.0763 0.0375 0.0941 
5.0 0.0975 0.0763 0.0376 0.0944 

10.0 0.0975 0.0765 0.0379 0.0958 
20,0 0.0975 0.0772 0.0395 0.1048 
40.0 0.0976 0.0806 0.0456 0.1378 
60.0 0.0979 0.0867 0.0541 0.1784 
80-0 0-0983 0.0948 0.0638 0.2224 

100.0 0.0988 0.1041 0.0743 0-2683 
150.0 0.1007 0.1309 0.1024 0.3872 
200.0 0.1035 0.1606 0.1320 0.5087 
250.0 0.1072 0.1919 0.1622 0.6315 
295-0* 0.1114 0.2210 0.1897 0.7054 
350.0 0.1172 0.2573 0.2236 
400.0 0.1233 0.2908 0.2545 
500.0 0.1369 0-3585 0.3167 
600.0 0.1522 0.4269 0.3791 
700.0 0.1685 0.4958 0.4416 
800-0 0.1857 0.5649 0.5042 
900.0 0.2034 0.6341 0.5668 

1000.0 0.2216 0.7035 0.6295 

* The a-tin value near room temperature is evaluated at 280 and 
not 295 K. 

diamond and grey tin the shell-core force constant is 
several times larger and, with a larger shell charge, this 
suggests that there is a fairly rigid coupling between 
core and shell and hence B values for the shell are 
comparable to those of the core. 

The alternative approach of treating the deforming 
atom as a whole is worth studying because it may not 
be known during a general analysis whether a 
particular atom is (or is not) deforming significantly. It 
has been shown in (I) that the Debye-Waller exponent 
W~ of a deforming atom consists of the normal 
exponent W, plus a K-dependent modification A W,, i.e. 

w~' = w,  + ~ w , ,  

where, in a conventional notation detailed in (I), 

A W  k = - i  ~. (2n a + 1)fl(k/2)K*(k/2). (4) 
a 

Although this expression holds good for the alkali 
halides it is important to examine its validity for the less 
symmetric silicon structure since its derivation in (I) 
ultimately used a transformation law for ~(l',kk',K) 
given by Reid (1974) which does not have the 
necessary generality. 

Let the symmetry operator {T/V(T) + r(m)/ acting 
on site coordinate r(l 'k ')  transform it to r(l~- k~) and the 
origin site r(0k) to r(0kr). Then, if the equilibrium 
scattering factors are taken as spherically symmetric, 
which is usually the case, the transformation of the 
real-space fl parameter obeys 

#( l'r, krk'r,K ) = fl( l ' ,kk',K T) T. (5) 

As far as inversion is concerned, this relation no 
longer provides any general requirements of evenness 
or oddness of fl because it now relates parameters on 
different sites. However, the simplifying 
transformations for the fl(k/2), which affect the 
Debye-Waller factor, remain true in full generality, 
though they are now associated with whether 
B(l',kk', K) is real or imaginary. In particular, 

- sign for real fl(l',kk',K) 
#(k/-~) = ¥ ~*(k/;) 

+ sign for imaginary ~8(l',kk',K). 

(6) 

If (6) is applied to the effect of dynamic deformation on 
the Debye-Waller factor it is straightforward to see 
that there will be no effect for all deformation processes 
which give a real ~(l' ,kk' ,K) and a finite effect given by 
(4) for those processes which give imaginary 
#(l ' ,kk' ,K). 

The shell model, without breathing, gives imaginary 
fl(l',kk',K). If the deformation is modelled by an 
isotropic shell, then A W k depends only on the 
magnitude of K through the ratio of shell-to-atom 
scattering factors. Because of the complex eigen- 
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vectors introduced by the non-symmorphic silicon 
structure, the expression for the equivalent AB k does 
not simplify to quite the same form as with the alkali 
halides but becomes 

[ f (K) ] she l l  8 7 Z 2  ( E )  [ . ~  g'* (k/2) mlk/2 AB,= ~ x 7f:(k/2). 
[f(K)]atom 3N ~-~ a 

if(k/2) ] 
+ ~*(k l~ ) .  ~ ] ,  (7) 

where ~ff'(k/2) is the complex relative shell-core 
displacement; i.e. 

AB = [f(K)i~he" S, (8) 
[f(K)latom 

defining the constant S determined by the lattice 
dynamics of the model. The atom type suffix k can be 
dropped in the silicon structure because of the identity 
of the atoms in the two sites. 

Summing over a mesh of 8000 wavevectors 
uniformly covering the Brillouin zone gives the S values 
shown in Table 4. Fig. 2(a) shows the kind of 
behaviour expected for AB/B when estimates are made 
of the ratio of shell/atom scattering factors based on 
the data in International Tables for X-ray 
Crystallography (1974) and partial scattering factors 
published by James & Brindley (1931). The broken 
curves are those obtained when [f(K)]sheU is taken as 
the scattering factor of a single outer electron. The solid 
lines show the total prediction of the shell model 
obtained by scaling the single-electron results by the 
model shell charge. [The shell charge also affects S so 
the two components in (8) are not as independent for 
the shell model as they may at first seem.] Of course, 
the impossibility of physically identifying the shell 
means that Fig. 2(a) is more of a guide to the expected 
behaviour than a positive assertion. Nevertheless, the 
effect should be observable at lower sin 0/2 values even 
though the Debye-Waller factors themselves are quite 
small at room temperature. There is less of an 
uncertainty in the calculated temperature dependence 
of AB/B which does not require an estimate of the shell 
scattering factor, provided the nature of the shell itself 
is temperature independent. Fig. 2(b) shows the 
remarkable constancy of AB/B with temperature. 

Table 4. Values of  S/B at 295 K 

This ratio, see (7) and (8), is the governing lattice-derived parameter 
determining the fractional effect of the dynamic deformation on 
the Debye-Waller factor. 

S/B 
Diamond -0 .2568  
Silicon -0 .7475  
Germanium -0 .9692  
a-Tin - 0 . 3 8 3 4  

The bond-charge model 

The bond-charge dynamical model in which the valence 
electrons are distributed in bonds between neigh- 
bouring cores seems a most natural description of the 
silicon-type structure. Weber (1977) has discussed the 
merits of several such models and presented in detail 
his adiabatic bond-charge model in which the bond 
charges are allowed to move adiabatically under the 
balance of Coulomb forces and short-range bond-core 

, ,  - - - , - - "  . . . . . . . . . . . .  --- :_~-~--.__-_ . . . . .  :_:-:--: . . . .  

. . f  ~./ ~ * " ' / a m o n d  " 

/ // 

0.0 0.2 0.4 0.6 0.8 1.0 

sin 0/;. (A L) 

(a) 

A B / B  ratio 
1.06 

1-00 

0.98 

0.96 

~ on 

~ " ,  D i  . . . .  d 

t 

' Grey tin 

0.92 
100 2 ~  3 ~  4 ~  5 ~  

Temperature (K) 

(b) 

Fig. 2. Values for the fractional change in Debye-Waller B 
produced by the dynamic deformation given by the shell model. 
(a) An estimate of the effect as a function of sin 8/2 for diamond 
and silicon. The broken lines take a shell charge of one electron 
and the solid lines scale by the model shell charge of 2.87 e for 
silicon and 3-80 e for diamond. (b) The variation of AB/B with 
temperature relative to the value at room temperature for the four 
silicon-like elements. 
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and bond-bond forces. As Weber's model is probably 
the best such model we shall limit outselves to 
calculations based on his parameters. 

Concerning the Debye-Waller factors of the bond 
charges, Price, Maslen & Mair (1978) have 
summarized some of the recent discussion in the 
literature. However, it has not been pointed out that 
even though bond charges midway between the cores 
are at sites of inversion symmetry, their Debye-Waller 
factors are necessarily anisotropic in the silicon 
structure. The general deformation formalism can cope 
with this situation provided equation (7) in (I) is 
modified to include a sum over the bond-charge 
scattering factors and eigenvectors, with the addition of 
appropriate phase factors required by the offset 
between the centres of the bond charges and the cores. 

However, when the subunits of a deforming atom are 
in four parts extending halfway to the next atom it 
becomes less meaningful to consider the atom as a 
whole with an effective Debye-Waller factor and more 
reasonable to discuss directly the Debye-Waller 
factors of the bond charges themselves, since they can 
be seen as separate electron density units without 
requiring outstanding resolution. 

If the bond charges are labelled as in Fig. 3, the 
anisotropic bond-charge Debye-Waller factor for the 
scattering vector K is 

W ( K )  = C (K2x + K~ + K~)  + 2 0  

I K x Ky  + Ky K z + K s K x for bond charge 3 

J K x Ky -- Ky  K~ -- K~ K x for bond charge 4 
> 

] 

t - K  x Ky - Ky  K s + K s K x for bond charge 5 

[, . -K x Ky  + Ky K~ -- K s K x for bond charge 6, 

(9) 
where C and D are determined from the bond-charge 
eigenvectors (and, of course, the lattice frequencies and 
the temperature). 

Fig. 3. Labelling of the bond charges (b.c.) in the silicon structure 
with coordinates shown in units of a, one half of the cubic cell 
side. The open circles for the cores and the black dots for the 
bond charges merely show location and are not representative of 
size or other detail of the corresponding electron distribution. 

For the silicon structure, with eigenvectors that 
include the phase factor exp l i q . r ( k k ' ) l  the general 
18 x 1 displacement eigenvector for the bond-charge 
model can be written for any wavevector as: 

V(3) 1, 
v(4) I 
v(5) l 
V ( 6 y  

(lO) 

and 

eigenvector for the origin core, $'*(1) that for the 
second core and V(3) --, V(6) are real three-component 
displacement eigenvectors for the bond charges labelled 
k = 3, 4, 5 and 6. The eighteen-component eigenvectors 
may not appear with this symmetry after diagonalizing 
the dynamical matrix but each one can be so 
transformed with the aid of an appropriate phase 
factor. The isotropic term C and the anisotropic term D 
may now be determined from the bond-charge 
eigenvectors after some reduction w~th the eigenvector 
symmetry transformations of Maradudin & Vosko 
(1968): 

C - - -  × IVy(k) + Vy(k )  + 
2N 12 a k=3 (11) 

, 1  
D - - -  , ~  [Vx(3) Vy(3) + Vx(3) Vs(3) 

2N 12 a 

+ Vy(3) Vs(3 ) + Vx(4 ) Vy(4)-  Vx(4 ) Vs(4 ) 

- Vy(4) Vs(4) - Vx(5) Vy(5) + Vx(5) Vs(5) 

- Vy(5)Vs(5)- Vx(6) Vy(6)- Vx(6 ) Vs(6 ) 

+ Vy(6) V~(6)]. (12) 

Since both isotropic and anisotropic terms vary 
quadratically with K, the bond-charge Debye-Waller 
factor can be characterized in reciprocal space by a 
shape and a magnitude. With the bond charge along 
[111] as an example, the shape is cylindrically 
symmetrical about [111], as shown in Fig. 4. For K 
along [111], a B value can be generated from the 
relationship 

W = B sin 2 0/22 

+ B A (K x Ky + Ky K~ + K~ Kx)/16 ~r 2, 

giving 

the isotropic B value, and 

B A--161r 2 x 2 D ,  

B l -- 167[ 2 C, (13) 

(14) 

where $'(1) is the three-component complex 



964 D E B Y E - W A L L E R  F A C T O R S  F O R  S I L I C O N - L I K E  C R Y S T A L S  

Table 5. Values for the isotropic and anisotropic components of the bond-charge Debye-Waller factors in ,~2 
for diamond, Si, Ge and a-Sn 

In certain circumstances, explained in the text, these values can be meaningfully compared with the core values in Tables 1 and 2. Equations 
(11)-(14) relate the tabulated constants to the general anisotropic Debye-Waller exponent constants for the bond charges. 

Temperature Diamond Silicon Germanium 

(K) B t B A Bt BA Bt BA 

1.0 0.0724 --0-0059 0.0917 --0.0275 0.0624 --0.0161 
5.0 0.0724 --0.0059 0.0917 --0.0275 0.0625 --0.0161 

10-0 0.0724 --0.0059 0.0919 --0.0275 0.0628 --0.0161 
20.0 0.0724 --0.0059 0.0926 --0.0275 0.0645 --0.0162 
40.0 0.0726 --0.0059 0.0962 --0.0278 0.0727 --0.0179 
60.0 0.0729 --0.0059 0.1029 --0.0290 0.0852 --0.0207 
80.0 0.0733 --0.0059 0.1121 --0.0309 0.1000 --0.0242 

100.0 0.0738 --0.0059 0.1230 --0.0333 0.1161 --0.0281 
150.0 0.0757 --0.0059 0.1548 --0.0408 0.1596 --0.0385 
200-0 0.0787 -0.0059 0.1902 --0.0495 0.2054 --0.0495 
250.0 0.0826 --0.0059 0.2277 --0.0587 0.2524 --0.0608 
295-0* 0.0868 -0.0060 0.2625 --0.0674 0.2951 -0-0711 
350.0 0.0927 --0.0061 0-3058 -0.0783 0.3478 --0.0838 
400.0 0.0986 --0.0062 0.3458 --0.0883 0.3959 --0.0954 
500.0 0.1117 -0.0065 0.4267 --0-1087 0.4926 -0.1186 
600.0 0.1261 --0.0069 0.5083 -0.1293 0.5896 --0.1420 
700.0 0.1412 -0.0074 0.5904 -0.1500 0.6868 -0.1654 
800.0 0-1569 -0.0080 0.6728 -0.1709 0.7841 -0.1888 
900.0 0.1730 -0.0086 0.7554 -0.1917 0.8815 -0.2123 

1000-0 0.1894 -0.0092 0.8381 -0.2127 0.9789 --0.2358 

a-Tin 

Bt BA 

0.0637 --0.0086 
0.0639 --0.0086 
0.0649 --0.0087 
0.0702 --0.0096 
0.0903 --0.0129 
0.1160 --0.0170 
0.1441 --0.0213 
0.1735 --0.0258 
0.2499 --0.0374 
0.3281 --0.0492 
0.4072 --0.0611 
0.4549 --0.0683 

* As with Table 2, the t~-tin values near room temperature are evaluated at 280 and not 295 K because of the phase transition at 
approximately 286 K. 

which is a suitable single parameter for the anisotropic 
component of B. Since C and D are themselves small 
quantities, Table 5 shows values for B 1 and B A which, 
with the shape of Fig. 4 in mind, lend themselves to a 
direct comparison with the core Debye-Waller B 
values of Table 1. 

[ 1 1 1 ]  

I1121  I I 
_ 

Fig. 4. The shape of the anisotropic bond-charge Debye-Waller 
exponent W(K) in reciprocal space for the bond charge at (]~)a. 
W(K) has been evaluated over a sphere of constant K z and is 
represented for each K by a vector of length W(K) extending 
from the origin in the direction of K. The figure shows half the 
resulting surface, cut by a diametral plane, and has been drawn 
from the low-temperature data for silicon which gives a very 
slight dip along the [ 1111 direction, just discernible in the figure. 
With greater anisotropy the dip becomes pronounced but, in 
fact, the anisotropy decreases with increasing temperature by an 
amount sufficient to remove the dip. The shape is cylindrically 
symmetric about the [111] axis, small irregularities in the 
diagram merely reflecting small approximations made by the 
drawing algorithm. The magnitude of W(K) in any direction 
scales as K 2. 

In real space, the mean-square vibrational ellipsoids 
for the bond charges are oblate spheroids with the 
minor axis lying along the line between the 
neighbouring cores. Taking silicon at room tempera- 
ture as an example, the 50% probability surface 
(Nelmes, 1969) has a semi-minor axis of 0-0659 A 
along [111] and equal semi-major axes of 0.0859 ,/k 
along [ l i0]  and [112], compared with the core 50% 
probability sphere of radius 0.119 A. Ellipsoid sizes for 
the other materials (and temperatures) can be 
calculated from the data in Table 5 following the 
method discussed by Willis & Pryor (1975). 

Conclusions 

An erroneous treatment of the Debye-Waller factors 
during a structure analysis may cause errors to 
propagate to the mean atomic site coordinates, or, 
through the scattering factors, to the charge density if it 
too is being determined. Dynamic deformation will 
influence the Debye-Waller factors in a different way 
from anharmonicity since only the smaller values of sin 
0/2 will be affected. It is just in this region, however, 
that the strongest reflections tend to occur and hence 
one is led to feel that there is some physical justifi- 
cation for allowing an additional fitting parameter 
ABk(K ) for these reflections. After fitting, an 
examination of the variation AB k with scattering vector 
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K can determine whether its behaviour could 
reasonably arise from dynamic deformation. Thus, in 
principle, accurate X-ray powder data from suitable 
materials could be used to investigate the effect of 
dynamic deformation provided absorption, extinction, 
TDS and other systematic effects can be evaluated 
accurately. However, it must be added that the Group 
IV elements are not ideal experimental subjects because 
most of the Bragg reflections occur at too high values 
of sin 0/2 due to systematic absences and small lattice 
constants. 

Although the fractional effect of dynamic 
deformation is fairly temperature independent, the 
increasing importance of the Debye-Waller B values 
with temperature implies that neglect of the effect may 
contribute to poorer fits at high temperatures than at 
low temperatures. In addition, the absence of the effect 
in neutron scattering (and in M6ssbauer absorption 
studies, for example on l l9Sn) could provide a means of 
experimentally determining the effect if all other factors 
are adequately known. It also means that care must be 
taken when interpreting neutron and X-ray data given 
by the same material. At a simple level, some of the 
discrepancies found between X-ray and nuclear 
Debye-Waller B values may be contributed by 
dynamic deformation. Certainly the calculations 
presented here have shown that even for the tightly 
bonded diamond-like elements dynamic-deformation 
effects are significant. 

The anisotropic bond-charge B values are possibly 
the first such values to be calculated from a lattice- 
dynamical model. It would be interesting to ascertain 
experimentally whether the model adequately describes 
the situation. It does seem certain that the B values for 
the bonding electrons are very different from those of 
the core electrons and that this must be seriously 
considered in accurate bond-charge determinations. 

We appreciate the help of Ronald Yorston in 
preparing Figs. 1 and 4. We are grateful for the 
generous use of the Honeywell 66/80 computer at 
Aberdeen University, for the use of the graphics 
package S Y M V U  made available by courtesy of 
Harvard University and for grant support by the 
Science Research Council. 
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